Orthogonal Forward Regression based on Directly Maximizing Model Generalization Capability

نویسنده

  • S. Chen
چکیده

The paper introduces a construction algorithm for sparse kernel modelling using the leave-one-out test score also known as the PRESS (Predicted REsidual Sums of Squares) statistic. An efficient subset model selection procedure is developed in the orthogonal forward regression framework by incrementally maximizing the model generalization capability to construct sparse models with good generalization properties. The proposed algorithm achieves a fully automated model construction without resort to any other validation data set for costly model evaluation. Index Terms — orthogonal forward regression, structure identification, cross validation, generalization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Density Construction Using Orthogonal Forward Regression

An automatic algorithm is derived for constructing kernel density estimates based on a regression approach that directly optimizes generalization capability. Computational efficiency of the density construction is ensured using an orthogonal forward regression, and the algorithm incrementally minimizes the leave-one-out test score. Local regularization is incorporated into the density construct...

متن کامل

Orthogonal-Least-Squares Forward Selection for

The objective of modelling from data is not that the model simply fits the training data well. Rather, the goodness of a model is characterized by its generalization capability, interpretability and ease for knowledge extraction. All these desired properties depend crucially on the ability to construct appropriate parsimonious models by the modelling process, and a basic principle in practical ...

متن کامل

Orthogonal-Least-Squares Forward Selection for Parsimonious Modelling from Data

The objective of modelling from data is not that the model simply fits the training data well. Rather, the goodness of a model is characterized by its generalization capability, interpretability and ease for knowledge extraction. All these desired properties depend crucially on the ability to construct appropriate parsimonious models by the modelling process, and a basic principle in practical ...

متن کامل

A forward selection based fuzzy regression for new product development that correlates engineering characteristics with consumer preferences

Fuzzy regression models have commonly been used to correlate engineering characteristics with consumer preferences regarding a new product. Based on the models, product developers can determine optimal engineering characteristics of the new product in order to satisfy consumer preferences. However, they have a common limitation in that they cannot guarantee to include significant regressors wit...

متن کامل

Robust nonlinear model identification methods using forward regression

In this correspondence new robust nonlinear model construction algorithms for a large class of linear-in-the-parameters models are introduced to enhance model robustness via combined parameter regularization and new robust structural selective criteria. In parallel to parameter regularization, we use two classes of robust model selection criteria based on either experimental design criteria tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003